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1 Introduction
The famous "singularity" problem for random matrices is the determination of the prob-
ability of the adjacency matrix of a random graph being singular for various distribution :
the Erdős–Rényi model, the uniform law on d-regular matrices, the configuration model,
etc.

1.1 The d-regular configuration model

The configuration model of d-regular directed graphs introduced by Bollobás [3], gener-
ates a random d-regular graph by the following procedure:

1

2

3

4

F1

F2

F3

F4

Figure 1: Configuration model, 3-regular graph.

1. To each vertex i ∈ [[1, n]] we associate a fiber Fi = {i1, · · · , id}, such so there are nd
points in total.

2. Select at random permutation P on F = ∪i∈[[1,n]]Fi uniformly. For i, j ∈ [[1, n]] we
connect them for each ik ∈ Fi, such that P (ik) ∈ Fj.

The resulting random graphMn,d is a d-regular directed multi-graph. We see that |Mn,d| =
(nd)!. For the undirected configuration model we take 2|dn, and we follow a similar
procedure:

1. To each vertex i ∈ [[1, n]] we associate a fiber Fi = {i1, · · · , id}, such so there are nd
points in total.

2. Select a pairing P on F = ∪i∈[[1,n]]Fi uniformly and add an edge k′−l′, if {k′, l′} ∈ P .
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The resulting random graph Gn,d is a d-regular undirected multi-graph. To create a
pairing we repeatedly select 2 vertices that have not been previously selected and match
them together, so the number of ordered pairing is

(
nd
2

)(
nd−2

2

)
· · ·
(

2
2

)
= 2−nd/2(nd)!. Finally

to get unordered pairing, we omit the ordering, i.e. :

|Gn,d| =
1

(nd/2)!

nd/2∏
i=0

(
nd− 2i

2

)
=

(nd)!

2nd/2(nd/2)!

1.2 Invertibility of adjacency matrix of random d-regular matri-
ces

This problem was solved for the d-regular configuration model with fixed d by Huang
[7]. In the random d-regular graph model we lose the independence of the vertices we get
for example in the Erdős–Rényi model, which poses significant issues for the singularity
problem. In the paper, Huang proved that the random d-regular matrices are non-singular
with high probability. Instead of studying the singularity problem in R, the key idea is
to embed the matrices in Fp. A matrix is singular in Fp if det ∈ pZ, so one might
expect that matrices are singular with positive probability, however the use of arithmetic
structures in Fp gives better estimates of the singularity probability. Precisely, he showed
with p� n−d, (d depending only on d), that :

P(A(G) is singular in Fp) ≤
1 + o(1)

n→∞

p− 1
(1.1)

where A(G) is the adjacency matrix of G. Deriving the following theorem :
Theorem 1.1. Let d ≥ 3 be a fixed integer. There exits d > 0, as n goes to infinity :

P(A(G) is singular in R) = o(n−d)

for G following the d-regular configuration model on graphs with n vertices.
The proof transforms the problem of counting :

|{(w,G)|A(G)w = 0}| (1.2)

to a random walk in Zp, then separating cases and studying them using a local limit
theorem estimate an a large deviation estimate accordingly. By refining the separation
in these categories we managed to simplify the proof, and to show that d can be taken
arbitrarily close to 1 independently of d.

1.3 Extension to other eigenvalues

We then tried to generalize the method developed for the eigenvalue 0 and study the
probability of λ ∈ Sp(G) for a fixed λ. Fix λ ∈ A and P its minimal monic polynomial,
let h be its degree. Let A ∈ Mn(Z), if λ is an eigenvalue of A then P (A) is singular in
Rn, therefore in each Fnp , i.e. there is a non-zero vector w ∈ Fnp such that P (A)w = 0. In
fact there are at least p− 1 vectors wk = kw for k 6= 0 ∈ Fp. Therefore we have :

(p− 1)|{G|λ ∈ Sp(G)}| ≤ |{(w,G)|P (A(G))w = 0}| (1.3)

To study this factor we notice that the factor (Alw)i counts the number of paths starting
in i of length l given a mass wj if they end in j. Thus P (A)w is closely related to the
h-neighborhood of vertices in G.
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To count |{(w,G)|P (A(G))w = 0}|, first we see w as a coloring of G in Fp (i ∈ V is
colored wi), we will proceed in several steps :

• Given a colored graph, we will use the generalized configuration introduced by
Bordenave Caputo [4] to determine the number of multi-graphs that have the same
colored h-neighborhood.

• We will then generalize the results of Bordenave Coste [5] and give a condition on a
list of n unlabeled h-neighborhood colored by Fp so that the exists a simple graph
with such h-neighborhood.

• Finally now that knowing the h-neighborhood of the graph, we will give a simple
condition such that we have P (A(G))w = 0.

Part I

Probability of being non-singular
2 Random Walk Interpretation
In this section, we enumerate {G ∈ Mn,d|A(G)v = 0 ∈ Fp} as the number of certain
walk paths, and then transforming that number into a random walk. We then give an
exponential bound on the Fourier transform of the walk where the transform is small.

2.1 Notations

We introduce some notations, let Φ : ∪k≥1Fkp → Np be the counting function :

∀k ∈ N∗, Φ(a1, · · · , ak) =

(
k∑
i=1

1ai=0, · · · ,
k∑
i=1

1ai=p−1

)

If
∑p−1

k=1 ak = n, then we define the sphere Sn(a0, · · · , ap−1) ⊂ Fnp as :

Sn(a0, · · · , ap−1) = {v ∈ Fnp |Φ(v) = (a0, · · · , ap−1)}

The cardinalty of Sn(a0, · · · , ap−1) is the multinomial :

|Sn(a0, · · · , ap−1)| =
(

n

a0, · · · , ap−1

)
=

n!∏
i≤p−1

ai!

And Fnp can be decomposed as :

Fnp =
⊔

a0+···+ap−1=n

Sn(a0, · · · , ap−1)
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We denote F0
d,p, the zero sum vectors of Fdp. We introduce the multiset Ud,p :

Ud,p = {Φ(a0, · · · , ad−1) : a0 + · · · ,+ad−1 = 0}

=

{
Φ

(
a0, · · · , ad−2,−

d−2∑
k=0

ak

)
: a =

(
a0, · · · , ad−2,−

d−2∑
k=0

ak

)
∈ F0

d,p

}

As a multiset |Ud,p| = |F0
d,p| = pd−1.

2.2 Preliminary results

Proposition 2.1. Let d ≥ 3 be a fixed integer, and a prime number p. Fix v ∈
Sn(a0, · · · , ap−1), we have :

|{G ∈Mn,d|A(G)v = 0}| =
p−1∏
j=0

(dak)!

∣∣∣∣∣
{

(uk)k≤n ∈ Und,p|
n∑
k=1

uk = d(a0, · · · , ap−1)

}∣∣∣∣∣
=

p−1∏
j=0

(dak)!p
n(d−1)P(X1 + · · ·+Xn = d(a0, · · · , ap−1))

where X1, · · · , Xn are independent uniform distributions over Ud,p.

Proof. We introduce the equivalence relation on F =
n⋃
k=1

Fk :

k′ ∼ l′ ⇐⇒ vk = vl

and π : ki 7→ vk the projection on Fp. Then for each j ∈ Fp :

|π−1(j)| =
∑
vl=j

|Fl| = daj

For a permutation P of nd points, we associate the map fP that colors fibers :

fP :

{
F → Fp
k′ ∈ Fk 7→ vl such that P(k′) ∈ Fl

then fP = π ◦ P . For each j ∈ Fp :

|f−1
P (j)| = |P−1(π−1(j))| = |π−1(j)| = daj (2.1)

On the contrary, if a given map f : F → Fp verifies :

∀j ∈ Fp, |f−1(j)| = daj = |π−1(j)|

then f derives from a permutation. Indeed for each permutation P that pairs elements
of f−1(j) with π−1(j), verifies f = fP , and these are the only ones. Therefore they are
exactly

∏
j∈Fp(daj)! permutations P such that f = fP
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Let G ∈Mn,d corresponding to a permutation P . A(G)v = 0 iff :

∀k ∈ [[1, n]],
n∑
l=1

ak,lvl = 0 (2.2)

As :
ak,l =

∑
k′∈Fk

1{P(k′)∈Fl}

Then :
n∑
l=1

ak,lvl =
∑
k′∈Fk

n∑
l=1

1{P(k′)∈Fl}vl

=
∑
k′∈Fk

fP(k′)

(2.3)

therefore A(G)v = 0 ⇐⇒ ∀k ∈ [[1, n]], {Φ(f(k′)), k′ ∈ Fk} ∈ Ud,p. And the number of
maps f that verify this condition and (2.1) are:

{f | ((f(1i)i≤d), · · · , (f(ni)i≤d) ∈ Und,p, |f−1
P (j)| = daj}

=


f | ((f(1i)i≤d), · · · , (f(ni)i≤d) ∈ Und,p,

n∑
k=1

∑
k′∈Fk

1f(k′)=j︸ ︷︷ ︸
=Φ((f(ki)i≤d)j

= daj


'

{
(uk)k≤n ∈ Und,p|

n∑
k=1

uk = d(a0, · · · , ap−1)

}
And for each of these maps they are

∏
j∈Fp(daj)! permutations associated, therefore :

|{G ∈Mn,d|A(G)v = 0}| =
p−1∏
j=0

(dak)!

∣∣∣∣∣
{

(uk)k≤n ∈ Und,p|
n∑
k=1

uk = d(a0, · · · , ap−1)

}∣∣∣∣∣

2.3 Fourier transform bound

Let X be a random vector uniform distributed over Ud,p. Then mean of X is given by:

E[Xj] =
1

pd−1

∑
a∈F0

d,p

d∑
k=1

1ak=j =
1

pd−1

d∑
k=1

∑
a∈F0

d,p

1ak=j

=
1

pd−1

d∑
k=1

∑
a1+···+ad−1+j=0︸ ︷︷ ︸

=pd−2

=
1

p

d∑
k=1

=
d

p

(2.4)
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The covariance of X if given by :

E[(Xi − d/p)(Xj − d/p)] = E[XiXj]− 2
d2

p2
+
d2

p2

=
1

pd−1

∑
a∈F0

d,p

Φi(a)Φj(a)− d2

p2

=
1

pd−1

∑
a∈F0

d,p

∑
k,l≤d

1ak=i1al=j −
d2

p2

=
1

pd−1

∑
a∈F0

d,p

δij

d∑
k=1

1ak=i

+
∑
k 6=l

1ak=i1al=j −
d2

p2

= δij
d

p
− d2

p2
+

1

pd−1

∑
k 6=l

∑
a1+···+ad−2+i+j=0

= δij
d

p
− d2

p2
+
d2 − d
p2

= δij
d

p
− d

p2

(2.5)

We denote:

µ = E[X], Σ = E[(X − µ)(X − µ)t] =
d

p
Ip −

d

p2
1p

And the characteristic function of X as :

φX(t) = E[ei<t,X>]

Because X is uniform |φ(t)| = 1 iff all the exponential have the same direction, i.e. :

∀a ∈ F0
d,p, < t,Φ(a) >≡< t,Φ(0) >= dt1 mod 2π (2.6)

this conditions is stable by sum. For any a ∈ Fdp we have :

p∑
k=1

Φ(a)k =

p−1∑
k=0

d∑
i=1

1ai=k

=
d∑
i=1

p−1∑
k=0

1ai=k︸ ︷︷ ︸
=1

= d

thus (1, · · · , 1)R verifies the condition (2.6).
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Let t ∈ Rp verify condition (2.6), without loss of generality (by replacing t with t −
(t0, · · · , t0)) we can assume t0 = 0. Φ(k, p−k, 0 · · · ) = (· · · 0, 1︸︷︷︸

position k

, 0 · · · , 0, 1︸︷︷︸
position p−k

, 0 · · · ),

therefore :
∀k ∈ Fp, tk + tp−k ≡ 0 mod 2π (2.7)

(1, k − 1, p− k, 0 · · · ) ∈ F0
d,p, therefore :

∀k ∈ Fp, t1 + tk + tp−k ≡ 0 mod 2π (2.8)

By subtracting (2.7) and (2.8) we get :

∀k ∈ Fp, tk ≡ t1 + tk−1 mod 2π (2.9)

Thus, ∀k ∈ Fp, tk ≡ kt1 mod 2π, especially, t1 ≡ (p + 1)t1 mod 2π. So we write t1 as
2nπ/p and tk as k2nπ/p + 2mkπ. We define αp = (0, 1/p, · · · , p − 1/p), then we have
proven that :

{t ∈ Rp||φX(t)| = 1} ⊂ 2πZαp + R1p + 2πZp

On the contrary, if t ≡ n2παp + λ1 mod 2π, then for a ∈ F0
d,p we have

∑d
i=1 ai ∈ pZ,

therefore :

< t ,Φ(a) > ≡
p−1∑
k=0

(
nk2π

p
+ λ

) d∑
i=1

1ai=k mod 2π

≡
d∑
i=1

(
nai2π

p
+ λ

)
mod 2π

≡ dλ mod 2π

We have proven :

Lemma 1.
|φX(t)| = 1 ⇐⇒ t ∈ 2πZαp + R1p + 2πZp

Proposition 2.2. For any δ > 0 small enough, and t ∈ (2πRp/Zp)/ ∪pj=0 Bj(δ), there
exists a constant c(d) > 0, that depends only on d, such as :

|φX−µ(t)| ≤ 1− pc(d)δ2

where Bj(δ) = {x ∈ Rp| ‖x− 2jπαp‖∞ ≤ δ}

Proof. Let c(d) = 1/(8× 402d3). By contradiction, we assume there is some t :∣∣∣∣∣∣ 1

pd−1

∑
ω∈Ud,p

ei<t ,ω>

∣∣∣∣∣∣ ≥ 1− pc(δ)δ2

As before, by shifting t we can assume t0 = 0. We denote ψ = arg φX(t). Let ε =
2δ
√

2dc(d). Then :
1− cos(ε) ≥ ε2/4 = 2dc(d)δ2 (2.10)
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Figure 2: Lower bound of 1− cos

We define the set of non-equidistributed :

U ′ = {ω ∈ Ud,p| |eω =< t , ω > −ψ − 2πnω| > ε}

where nω is such that | < t , ω > −2πnω| < π. Then |U ′| ≤ pd−2/(2d), otherwise :∣∣∣∣∣∣ 1

pd−1

∑
ω∈Ud,p

ei<t ,ω>

∣∣∣∣∣∣ =
1

pd−1
<

∣∣∣∣∣∣
∑
ω∈Ud,p

ei<t ,ω>

∣∣∣∣∣∣
=

1

pd−1
<

 ∑
ω∈Ud,p

ei<t ,ω>

 e−iψ

=
1

pd−1
<
∑
ω∈Ud,p

eieω

<
1

pd−1
(|Ud,p/U ′|+

∑
ω∈U ′

cos(ε)

< 1 +
|U ′|
pd−1

(−1 + 1− 2dc(d)δ2)

< 1− pc(δ)δ2

We consider zero sum d× d array in Fp. Fix a1 = (a1
1, · · · , a1

d) ∈ F0
d,p, the total number

of zero sum array with first row given by a1 is p(d−1)(d−2) (given a d−1×d−1 array there
is one and only one way to construct a d × d zero sum array from it). For any b ∈ F0

d,p,
the total number of zero arrays with first row a1 and one other row or column given by
b is at most :

(d− 1)p(d−1)(d−3)︸ ︷︷ ︸
b is a row

+ dp(d−1)(d−3)︸ ︷︷ ︸
b is a column

(2.11)
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We also have :

|U ′|((d− 1)p(d−1)(d−3) + dp(d−2)(d−2)) ≤ 1

2
(p(d−2)(d−2)+d−2 + p(d−1)(d−3)+d−2)

≤ 1

2
(p(d−1)(d−2) + p(d−1)(d−2)−1)

< p(d−1)(d−2)

If, for all zero sum matrix with rows ai (first row a1 fixed before), column bj they were at
least a row or a column such that Φ(ai) ∈ U ′ or Φ(bj) ∈ U ′, then we would have :

p(d−1)(d−2) =
∑

φ(b)∈Ud,p

|{zero sum matrix with b as a column or row, and

a1 as the first row}|
≤ |U ′|((d− 1)p(d−1)(d−3) + dp(d−2)(d−2)) < p(d−1)(d−2)

thus there is at least a zero sum matrix with first row a1, such that :

∀i ≥ 2,Φ(ai) /∈ U ′ ∀j ≥ 1,Φ(bj) /∈ U ′

We have aij = bji , therefore for all k ∈ Fp :

d∑
i=1

Φk(a i) =
d∑
i=1

d∑
j=1

1aij=k =
d∑
i=1

d∑
j=1

1bji=k
=

d∑
j=1

Φk(bj)

And :

< t ,Φ(a1) > =
d∑
j=1

< t ,Φk(bj) > −
d∑
i=2

< t ,Φ(a i) >

= 2πnΦ(a1) + ψ +
d∑
j=1

εΦk(bj) −
d∑
i=2

εΦ(a i)︸ ︷︷ ︸
=εΦ(a1)

Thus, uniformly, |εw| ≤ 2dε. Especially, if a1 = (0, · · · , 0) we get |ψ| ≤ 2dε, thus uniformly
on Ud,p we have :

∀ω ∈ Ud,p, | < t , ω > | ≤ 4dε (mod 2π) (2.12)

We proceed similarly to 2.3 and considering two family of vectors uk = (d−2)e0+ek+ep−k,
vk = (d− 3)e0 + e1 + ek−1 + ep−k, we get :

∀k ∈ Fp, t1 ≡ ktk +
k∑
j=2

(evj − euj) mod 2π (2.13)

We can shift t in 2πZp and 2παpZ and assume there is an equality in (2.13) and take
|t1| ≤ 1/2p. Thanks to the bound (2.12) we have |tk| ≤ k/2p+ 8dε(k− 1) ≤ 1, for δ small
enough.
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Let kmax = argmaxktk and kmin = argminktk. By taking u = ukmax and v = (d− 3)e0 +
ekmin

+ ekmax−kmin
+ ep−kmax in (2.12), we get :

3 ≥ |tkmax − tkmin
− tkmax−kmin

| ≥ 2π|nu − nv| − |εu − εv|

therefore nu = nv, and :
tkmax = tkmin

+ tkmax−kmin
+ ε1

where |ε1 = εu − εv| ≤ 8dε, by symmetry we also have tkmin
= tkmax + tkmin−kmax + ε2 with

|ε2| ≤ 8dε. By subtracting both equations we get :

2(tkmax − tkmin
) = tkmax−kmin

− tkmin−kmax + ε1 − ε2
≤ tkmax − tkmin

+ ε1 − ε2
|tkmax − tkmin

| ≤ |ε1|+ |ε2| ≤ 16dε

Furthermore :
|t2 − t1| = |t1 + ev1 − eu1| ≤ |tkmax − tkmin

| ≤ 16dε

So |t1| ≤ 24dε/p and finally, for any k :

|tk| ≤ |tk − t1|+ |t1| ≤ |tkmax − tkmin
|+ |t1| ≤ 40dε

We recall, the definition of ε and c(d), and we get :

40dε = 40d× 2δ

√
2d

8× 402d3
= δ

3 Proof of Theorem 1.1 for directed graphs
Thanks to proposition 2.1, we can rewrite the theorem as :

∑
a0+···+ap−1=n

a0 6=n

(
n

a0, · · · , ap−1

)(
dn

da0, · · · , dap−1

)−1

× pn(d−1)P(Sn = X1 + · · ·+Xn = (da0, · · · , dap−1)) = 1 + o(1)

(3.1)

We decompose p-tuples (a0, · · · , ap−1) into two classes :

• (Equidistributed) E is the set of p-tuples (a0, · · · , ap−1), such that :

max
0≤j≤p−1

∣∣∣∣ajn − 1

p

∣∣∣∣ ≤√δ(n)/p (3.2)

where δ → 0. Then we also have ‖a/n− 1/p‖2 ≤ δ/p. In the article by Huang this
bound was ln(n)/n, but we will see later that we can take δ = ln(n)2/3/n1/3.

• (Non-Equidistributed) N , the others.
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3.1 Local limit theorem estimate

In this section, we estimate the sum of terms in (3.1) corresponding to equidistributed
p-tuples, using a local limit theorem.

Proposition 3.1. Let d ≥ 3 be a fixed integer, p a prime such that gcd(p, d) = 1. Then
for n sufficiently large :∑

a∈E

∑
v∈Sn(a0,··· ,ap−1)

|{G|A(G)v = 0}| ≤ (1 + o(1))|Mn,d| (3.3)

Proof. We first estimate the factor on the right hand side of (3.1), using the Stirling
formula :

(dn)!

n!
∼
√

2πdn

2πn

(
dn

e

)dn ( e
n

)n
=
√
d exp(−(d− 1)n+ dn ln(dn)− n lnn)

=
√
d exp(−(d− 1)n+ (d− 1)n ln(n) + dn ln d)

(3.4)

therefore, as
p−1∑
j=0

aj = n :

(
n

a0, · · · , ap−1

)(
dn

da0, · · · , dap−1

)−1

=(1 + o(1))dp/2
n!

(dn)!
exp

(
p−1∑
j=0

−(d− 1)aj + (d− 1)aj ln(aj) + daj ln d

)

=(1 + o(1))d(p−1)/2 exp

(
(d− 1)

p−1∑
j=0

aj ln(aj)− (d− 1)n ln(n)

)

We denote nj = aj/n, then :

p−1∑
j=0

aj ln(aj) = n ln(n) + n

p−1∑
j=0

nj ln(nj)

Thus : (
n

a0, · · · , ap−1

)(
dn

da0, · · · , dap−1

)−1

p(d−1)n

=(1 + o(1))d(p−1)/2 exp

(
(d− 1)n

(
p−1∑
j=0

nj ln(nj) + ln(p)

))

=(1 + o(1))d(p−1)/2 exp

(
(d− 1)n

p−1∑
j=0

(nj ln(nj)− 1/p ln(1/p))

) (3.5)

Let H : ker tr→ R, be such as :

H(x ) =

p−1∑
j=0

(xj + 1/p) ln(xj + 1/p)

On eigenvalues of random d-regular graphs 12



Then :

DH(0).h =

p−1∑
j=0

(ln(0 + 1/p) + 1)hj = (ln(1/p) + 1)tr(h) = 0 (3.6)

We can derive (3.6) also by the fact that the uniform measure on {1, · · · , p} maximises
the entropy −H. We can then establish the hessian of H at 0 :

D2H(0).h2 =
1

1/p+ 0

p−1∑
j=0

h2
j = p‖h‖2

thus :

p−1∑
j=0

(nj ln(nj)− 1/p ln(1/p)) = H(n− 1/p)−H(0)

= |H(n− 1/p)−H(0)|
= p/2‖n− 1/p‖2 + o(‖n− 1/p‖2)

(3.7)

therefore, we can bound uniformly the first term of (3.1) :(
n

a0, · · · , ap−1

)(
dn

da0, · · · , dap−1

)−1

p(d−1)n

=(1 + o(1))d(p−1)/2 exp
(
(d− 1)n(p/2‖n− 1/p‖2 + o(δ))

) (3.8)

By the inverse Fourier formula for discrete variables :

P(Sn = da) =
1

(2π)p

∫
2π(R/Z)p

φnX−µ(t)e−i<t ,da−nµ>dt

Outside of the domains Bj(ε) from Proposition 2.2, φ is exponentially small :

1

(2π)p

∫
2π(R/Z)p

(1− c(d)ε2/p3)ndt ≤ e−c(d)pε2n (3.9)

Furthermore, the integrand is translation invariant by αp. Indeed :

∀λ ∈ R, exp(i < t + λαp, X >) = exp(i < t , X >)

And Bj = jαp +B, therefore we have :

P(Sn = da) ≤ e−c(d)ε2n/p3

+
1

(2π)p

p−1∑
j=0

∫
Bj(ε)

φnX−µ(t)e−i<t ,da−nµ>dt

≤ p

(2π)p

∫
B(0,ε)

φnX−µ(t)e−i<t ,da−nµ>dt + e−c(d)pε2n

(3.10)

We take, the orthogonal matrix O given by the spectral theorem, such that OtΣO =
d/pIp−1. In particular B(0, ε) = O(B(0, ε)). The Taylor expansion of the characteristic

On eigenvalues of random d-regular graphs 13



function is :

φX−µ(Ox ) = E[1 + i〈Ox,X − µ〉 − 1

2
〈Ox,X − µ〉2 − i

6
〈Ox,X − µ〉3] +O(‖x‖3/p)

= 1− 1

2
(Ox )tΣ(Ox ) +O(‖x‖3/p)

= 1− d

2p
‖x‖2 +O(‖x‖3/p)

Then, if ε→ 0 :
φX−µ(Ox )n = (1 + o(1))e−

dn
2p
‖x‖2 (3.11)

therefore:
p

(2π)p

∫
B(0,ε)

φnX−µ(t)e−i<t ,da−nµ>dt

=
p

(2π)p
(1 + o(1))

∫
B(0,ε)

e−
dn
2p
‖x‖2e−i〈x,O

t(da−nµ)〉dx

≤ p

(2π)p
(1 + o(1))

∫
Rp
e−

dn
2p
‖x‖2e−i〈x,O

t(da−nµ)〉dx︸ ︷︷ ︸
= Fourier transform of N (0,p/dnIp)

=(1 + o(1))
p
√

det p/dnIp
(2π)p/2

exp
(
− p

2dn
‖Ot(da − nµ)‖2

)
=(1 + o(1))p

( p

dn2π

)p/2
exp

(
− p

2dn
‖da − nµ‖2

)
=(1 + o(1))p

( p

dn2π

)p/2
exp

(
−pdn

2
‖n− 1/p‖2

)
This last term cancels the exponent in (3.8), combining this with (3.10) we have for any
ε, d-small enough :

1

|Md,p|
∑

v∈Sn(a0,··· ,ap−1)

|{G ∈Mn,d|A(G)v = 0}

≤
(

1 + o(1)
ε→0

)
p
( p

n2π

)p/2
exp(−pn/2‖n− 1/p‖2)

+O(exp((d− 1)pn/2‖n− 1/p‖2 − pε2n))

(3.12)

We have |E| ≤ |Fnp | = np so by taking, ε � δ, and ε2 � lnn/n, the last term is small,
uniformly on p : ∑

a∈E

O(exp((d− 1)pn/2‖n− 1/p‖2 − pε2n))

=O(exp(pn[(d− 1)/2δ2 − ε2 + ln(n)/n])

=o(1)

(3.13)

We have seen in Section 2.3, if
∑p−1

j=0 jaj 6≡ 0 mod p then P(Sn = da) = 0. However we
can replace the terms by an average over E :

p exp(−pn/2‖n− 1/p‖2) = (1 + o(1))

p−1∑
j=0

exp(−pn/2‖n + (ej − e0)/n− 1/p‖2)
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therefore, we replace the sum over
∑p−1

j=0 jaj ≡ 0 mod p, with the sum over all E , gaining
a factor 1/p. Finally, the set of points n − 1/p ∈ E is a subset of the lattice Z/n. The
volume of the fundamental domain is 1/np, therefore :∑

a∈E

( p

n2π

)p/2
exp(−pn/2‖n− 1/p‖2) ≤

(np
2π

)p/2 ∫
B(0,δ)

e−pn/2‖x‖
2

dx

≤ 1

(3.14)

The Proposition follows by combining (3.12), (3.13) and (3.14) for ε � δ, and ε2 �
lnn/n.

3.2 Large deviation estimate

In this section, we show that the sum of terms in (3.1) corresponding to non-equidistributed
p-tuples, is small.

Proposition 3.2. Let d ≥ 3 be a fixed integer, p a prime such that gcd(p, d) = 1, with
p� n. We have : ∑

a∈N

∑
v∈Sn(a0,··· ,ap−1)

|{G|A(G)v = 0}| = o(1)|Mn,d| (3.15)

Thanks to our work on (3.5), we know that :(
n

a0, · · · , ap−1

)(
dn

da0, · · · , dap−1

)−1

p(d−1)n

=eO(p) exp

(
(d− 1)n

(
p−1∑
j=0

nj ln(nj) + ln(p)

))

We can estimate the last term with a Chernoff bound. For any t ∈ Rp :

P(Sn = da) ≤ P(exp(< t , Sn > −d < t ,a >) = 1)

≤ E(e<t ,X>)ne−d<t ,a>

thus :

P(Sn = da) ≤ inf
t∈R

E(e<t ,X>)ne−d<t ,a>

= exp(−d < t ,a > + ln inf
t∈Rp

E(e<t ,X>)n)

= exp(n inf
t∈Rp

lnE(e<t ,X>)− d < t ,a >)

(3.16)

We define the rate function :

I(n) = −(d− 1)

(
p−1∑
j=0

nj ln(nj) + ln(p)

)
−
(

inf
t∈Rp

lnE(e<t ,X>)− d < t , n >
)

Where :
1

|Mn,d|
∑
a∈N

∑
v∈Sn(a0,··· ,ap−1)

|{G|A(G)v = 0}| =
∑
a∈N

eO(p)e−nI(n)
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Proposition 3.3. Let d ≥ 3 be a fixed integer, p a prime such that gcd(p, d) = 1. Then
for δ sufficiently small, there exists a constant c(d), such that :

I(n) ≥ c(d)δ3

p
(3.17)

unless max0≤k≤p−1 |nk − 1/p| ≤ δ/p or n0 ≥ 1− δ/p.

Lemma 2. Let d ≥ ε ≥ 0, and a1, · · · , ad ∈ Rd
+, be such that :

min ai
max ai

≤ 1

1 + ε

Then :
d∏

k=1

a
1/d
k ≤ (1− (ε/d)2/2)

d∑
k=1

ak
d

(3.18)

Proof of the Lemma 2. We can assume that ai are sorted in ascending order, and we
denote

∑
ai/d = m. We define bi = ai, if i 6= 1, d; and b1 = a1ad/m, bd = m, then :

d∏
k=1

bk =
d∏

k=1

ak (3.19)

We have also :

b1 + bd − (a1 + ad) = m− a1 − ad + a1ad/m

= (m− a1)(m− ad)/m
≤ (m− a1)(m− (1 + ε)a1)/m

≤ −ε(m− a1)

(3.20)

We can then bound a1 :

dm =
d∑

k=1

ai ≥ ad + (d− 1)a1 ≥ (d+ ε)ad (3.21)

Finally, combining (3.19), (3.20), (3.21), and the usual AM–GM inequality, we get :

d∏
k=1

a
1/d
k ≤

d∑
k=1

bk
d

≤ m+ (b1 + bd − (a1 + ad))/d

≤ m− ε/d(m− a1)

≤
(

1−
(

1− d

d+ ε

)
ε/d

)
m

≤ (1− (ε/d)2/2)m
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Proof of the Proposition 3.3. We t = (d − 1)/d ln n ∈ Rp then all terms except −(d −
1) ln p− lnE, cancel-out and I is lower bounded by :

I(n) ≥ −(d− 1) ln(p)− lnE(e<t ,X>)

= −(d− 1) ln(p) + (d− 1) ln(p)− ln
∑
ω∈Ud,p

p−1∏
j=0

nj
d−1
d
ωj

= − ln
∑

a∈F0
d,p

p−1∏
j=0

d∏
k=1

nj
d−1
d
1ak=j

= − ln
∑

a∈F0
d,p

d∏
k=1

nak
d−1
d

(3.22)

For the d-tuples that meet the conditions of the Lemma 2, we have :
d∏

k=1

nak
d−1
d =

d∏
i=1

∏
j 6=i

naj
1/d

≤ 1− (ε/d)2/2

d

d∑
i=1

∏
j 6=i

naj

F0
d,p is stable by permutation, so is the conditions of the Lemma, thus we get :

∑
a∈F0

d,p

d∏
k=1

nak
d−1
d ≤ 1

d

∑
a∈F0

d,p

(1− 1 min ai
max ai

≤ 1
1+ε

(ε/d)2/2)
d∑
i=1

∏
j 6=i

naj

=
1

d

∑
a∈Fd−1

p

d∑
i=1

d−1∏
j=1

naj −
ε2

2d3

∑
a∈F′

d∑
i=1

d−1∏
j=1

naj

=
∑

a∈Fd−1
p

d−1∏
j=1

naj︸ ︷︷ ︸
= sum of products of d−1 terms

− ε2

2d2

∑
a∈F′

d−1∏
j=1

naj

=

(
p−1∑
j=0

nj

)d−1

− ε2

d2

∑
a∈F′

d−1∏
j=1

naj

= 1− ε2

2d2

∑
a∈F′

d−1∏
j=1

naj

where F′ ⊂ Fd−1
p is the set of d − 1 tuples a , such that the conditions of the Lemma for

na are met.

In the following, we take ε = δ/3 and assume ε ≤ 1/2. We prove that there exists a
constant c(d) that depends only on d, such that :∑

a∈F′

d−1∏
j=1

naj ≥
c(d)δ

p
(3.23)
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unless max0≤k≤p−1 |nk − 1/p| ≤ δ/p or n0 ≥ 1− δ/p.

Without loss of generality, we can assume n are sorted in descending order. We take
t1, t2 the last index such as nti ≥ n0/(1 + ε)i. If nt1+1 + · · · np−1 ≥ ε, we can restrict the
sum to a0 = 0, a2 ≥ t1, then :

∑
a∈F′

d−1∏
j=1

naj ≥ n0(nt1+1 + · · · np−1)
∑

a∈Fd−3
p

d−1∏
j=3

naj︸ ︷︷ ︸
=1d−3

≥ ε

p
(3.24)

The claim (3.23) follows, so we can assume nt1+1 + · · · np−1 ≤ ε. If nt2 + · · · np−1 ≥ ε/p,
by restricting the sum (3.23) over a0 ∈ {0, · · · , t1} and a2 ∈ {t2 + 1, · · · , p− 1} we have :

∑
a∈F′

d−1∏
j=1

naj ≥ (n0 + · · · nt1)(nt2+1 + · · · np−1) ≥ ε(1− ε)
p

≥ ε

2p
(3.25)

We assume now additionally that nt2 + · · · np−1 ≤ ε/p and consider three cases :

• t2 = p− 1 then n0/np−1 < (1 + ε)2 ≤ 1 + δ and max0≤k≤p−1 |nk − 1/p| ≤ δ/p.

• t2 = 0 then, if before rearranging n0 is the max, then n0 ≥ 1− ε/p ≥ 1− δ/p. Else,
there exists i 6= 0, such as ni ≥ 1−δ/ε. By restricting the sum to a0 = · · · = ad−2 = i,
we get : ∑

a∈F′

d−1∏
j=1

naj ≥ nd−1
i ≥ (1− ε/p)d−1 ≥ 1

2d−1
(3.26)

• Else, we have n0 ≥ · · · ≥ nt2 ≥ n0/(1 + ε)2, and t2n0 ≥ 1− ε/p. We will restrict the
sum (3.23) over a0, · · · , ad−2 ∈ {0, · · · , t − 2}, and ad−1 ∈ {t2 + 1, · · · , p − 1}. We
take q such as :

t2q ≡ −2(0 + 1 + · · ·+ t2) = −t2(t2 + 1) mod p (3.27)

The number of d−2 tuples in {0, · · · , t2} such as a0+· · ·+ad−3 6≡ q mod p is at least
(t2−1)td−3

2 . And for such a d−2 tuple a there exists at least one ad−2 ∈ {0, · · · , t2}
such as a1 + · · ·+ ad−2 6≡ −0, · · · ,−t2 mod p. Otherwise :

t2(a1 + · · ·+ ad−2) + 0 + · · ·+ t2 ≡ −(0 + · · ·+ t2) mod p (3.28)

and a1 + · · ·+ ad−2 ≡ q mod p, which leads to a contradiction. Therefore there are
least (t2 − 1)td−3

2 term in the restriction we made :

∑
a∈F′

d−1∏
j=1

naj ≥ (t2 − 1)td−3
2

(
1− ε/p

(1 + ε)2t2

)d−1

≥ 1

23dp
(3.29)

Combining, (3.24), (3.25), (3.26), (3.27) and (3.29), we can take c(d) = 1/23d+1d2, and use
− ln(1− x) ≥ x to prove the Proposition 3.3.
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Figure 3: Lower bound of − ln(1− t)

We can then take
√
δ from (3.2), and apply Proposition 3.3, to tuples in N such that

n0 ≤ 1−
√
δ/p, and we get :

1

|Mn,d|
∑
a∈N

a0≤n(1−
√
δ/p)

∑
v∈Sn(a0,··· ,ap−1)

|{G|A(G)v = 0}|

=
∑
a∈N

eO(p)e−nc(d)δ3/2/p = O(exp(−nc(d)δ3/2/p+ ln(n)p))

We can take any ωn → +∞, with ωn � (n/ ln(n))2/3. Then with δ = ωn(ln(n)/n)2/3 and
p� ω3

n, such that this sum converges to 0. So we only need to prove Proposition 3.2, for
a0 ≥ n(1−

√
δ/p).

Proof of Proposition 3.2. We have a0 = n − m, 2 ≤ m ≤ n
√
δ/p (if we recall that a ∈

Φ(F0
d,p), m = 1 is impossible). We re-estimate the first factor of the sum on random walks

(3.1) : (
n

a0, · · · , ap−1

)(
dn

da0, · · · , dap−1

)−1

≤ nm

(d(n−m))dm

p−1∏
j=1

(daj)!

aj!

≤ eO(m)

n(d−1)m

p−1∏
j=1

(daj)!

aj!

(3.30)

If ω1 + · · ·+ ωd = da there is at most the choice of dnj times the number j in a vector of
length dn, that is to say the multinomial:∣∣∣∣∣

{
(uk)k≤n ∈ Und,p|

n∑
k=1

uk = d(a0, · · · , ap−1)

}∣∣∣∣∣
≤ (dm)!

(da1)! · · · (dap−1)!

∣∣∣∣∣
{

(uk)k≤n ∈ Und,p|

(
n∑
k=1

uk

)
0

= da0

}∣∣∣∣∣
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Furthermore da1 + · · ·+ daj = dm and if uk 6= (d, 0 · · · ), then
∑p−1

i=1 (uk)i ≥ 2, so there is
at most dm/2 vector uk not equal to (d, 0, · · · ), so :∣∣∣∣∣

{
(uk)k≤n ∈ Und,p|

n∑
k=1

uk = d(a0, · · · , ap−1)

}∣∣∣∣∣
≤ (dm)!

(da1)! · · · (dap−1)!

(
n

dm/2

)
≤ (dm)!

(da1)! · · · (dap−1)!

ndm/2

(dm/2)!

(3.31)

Putting (3.30) and (3.31) together, the total contribution of the terms in (3.15) is bounded
by :

n
√
δ/p∑

m=2

∑
a1+···ap−1=m

eO(m)(dm)!

a1! · · · ap−1!

1

(dm/2)!n(d/2−1)m
≤

n
√
δ/p∑

m=2

eO(m)(dm)!pm

m!(dm/2)!n(d/2−1)m

≤
n
√
δ/p∑

m=2

(
O(1)md/2p

mnd/2−1

)m
We can take for example ωn = n1/3, such that

√
δ = lnn1/3/n1/6, then :

n
√
δ/p∑

m=2

(
O(1)md/2p

mnd/2−1

)m
≤ n
√
δ(O(1)

√
δ
d/2−1

)10 + o(1)

= O(ln(n)n−(5d−9)/6+1) + o(1)

= O(ln(n)n−2) = o(1)

(3.32)

Combining Proposition 3.1 and Proposition 3.2, we have proven that |{(w 6= 0 ∈
Fnp , G ∈ Mn,d)|A(G)w = 0}| ∼ |Mn,d|, for p � ω3

n = n; which proves Theorem 1.1 for
directed graphs.

Part II

Probability of having a certain
eigenvalue
Fix λ ∈ A the set of algebraic integers. Let P be its minimal monic polynomial and h be
its degree.

If we analyze the preliminary work done for the proof of Theorem 1.1, we see that we
introduced a coloring fP on half edges or fibers such that the edges i → j is colored wj
and (A(G)w)i is the sum of the colors of the fibers starting from i. We then counted
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how many graph lead to the same coloring, and sum on the number of coloring to get
all the graphs in Mn,d. Finally we got a condition of the coloring (Φ(f(k′)) ∈ Ud,p) to
count the number of graphs such that A(G)w = 0. However for other eigenvalues the
condition P (A(G))w = 0 involves information not only on the vertices adjacent to i but
its entire h-neighborhood, therefore to generalize the process, we need to create a much
more precise coloring that encodes the entire h-neighborhood of a point.

Once we have this coloring we need to determine a condition similar to Φ(f(k′)) ∈ Ud,p.
This can be achieved by decomposing P in a specific polynomial base Qk such that
Qk(A(G))ij gives the number of non backtracking walks from i to j of length k and
noticing that this number is the same as the number of apparition of j in depth k of the
universal covering of G centered in i.

4 Generalized configuration model and number of graphs
with same h-neighborhood

4.1 Colored configuration model

4.1.1 Directed multi-graphs with colors

Let E be a finite set, with an arbitrary total order. Each pair (i, j) ∈ C = E2 is interpreted
as a color. Define the subsets of colors :

C< = {(i, j) ∈ C| i < j}

and we define C=, C≤, C6=, C> in the obvious way, and (i, j) = (j, i) the conjugate color.

We consider Ĝ(C) the class of C-colored directed multi-graphs. G ∈ Ĝ(C) if G = (V, ω),
where V = [[1, n]] and ω = {ωc}c∈C, where ωc : V 2 → N is a map with the following
properties :

• ωc(u, v) = ωc(v, u).

• if c ∈ C=, ωc(u, u) is even.

We consider also G(C) the simple graphs of Ĝ(C). The interpretation is that, for any c
ωc(u, v) is the number of directed edges of color c from u to v (counted double if c ∈ C=).
If G ∈ Ĝ(C), set:

Dc(u) =
∑
v∈V

ωc(u, v)

D(u) = {Dc(u); c ∈ C} (can be see as an integer matrix). The vector D = {D(u);u ∈ V ]}
will be called the degree sequence of G.

4.1.2 Generalized configuration model

Let Dn denote the set of n-tuple of non-negative integer matrix D(i) = {Dc(i); c ∈ C}
such that :

S =
n∑
i=1

D(i)
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is a symmetric matrix with even coefficients on the diagonal, S = {Sc; c ∈ C}. For a
D ∈ Dn, Ĝ(D) is the set of colored multi-graphs which degree sequence coincides with D.
A graph of Ĝ(D) is the result of the superposition of the multi-graphs Gc for c ∈ C≤ with
degree sequence Dc.

Configuration model for c ∈ C=. When c ∈ C=, ωc(u, v) = ωc(v, u), so Gc is an
undirected graph of degree sequence Dc. We may use the usual construction of the
undirected configuration model provided in introduction, i.e. uniform pairing of Sc =∑
Dc(i) points.

Let Σc be the set of configurations, i.e. pairing of Sc points, and for σc ∈ Σc, Γ(σc) be the
multi-graph resulting form the pairing σc.

Lemma 3. Fix c ∈ C=. Let H be a multi-graph with degree sequence Dc, the number of
configuration resulting in H is given by :

nc(H) =

n∏
i=1

Dc(i)!

n∏
i=1

(ωc(i, i)/2)!2ωc(i,i)/2
∏
i<j

ωc(i, j)!
(4.1)

Proof. We need to count the number of matchings σc that pair ωc(i, j) elements of sets of
cardinal Dc(i) and Dc(j) (if i 6= j), and the number of ωc(i, i)/2 internal pairings of a set
of cardinal Dc(i).

• For the first category, once we choose ωc(i, j) elements on each side we have ωc(i, j)!
matchings that produce the same graph

• For the second category, once we choose ωc(i, i) elements, we have ωc(i, i)!! pairings
that produce the same graph.

Finally for each node i, the number of ways of choosing these elements to pair is exactly
the multinomial : (

Dc(i)

ωc(i, 1) · · ·ωc(i, n)

)
=

Dc(i)!

ωc(i, 1)! · · ·ωc(i, n)!

Putting all together the total number of configuration resulting in H is :
n∏
i=1

(
Dc(i)

ωc(i, 1) · · ·ωc(i, n)

) n∏
i=1

ωc(i, i)!

(ωc(i, i)/2)!2ωc(i,i)/2

∏
i>j

ωc(i, j)!

=
n∏
i=1

Dc(i)!

∏
i≥j ωc(i, j)!∏
i,j≤n ωc(i, j)!

1∏n
i=1(ωc(i, i)/2)!2ωc(i,i)/2

= nc(H)

Configuration model for c ∈ C<. We have ωc(u, v) = ωc(v, u), Dc(i) represents the
number of outgoing/incoming edges at the node i. We consider the bipartite version of
the previous construction i.e. pairing Sc =

∑
Dc(i) points with another Sc points.

Let Σc be the set of configurations, i.e. permutations of a set of Sc points, and for σc ∈ Σc,
Γ(σc) be the directed multi-graph resulting from the matching σc and σc = σ−1

c .
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Lemma 4. Fix c ∈ C<. Let H be a directed multi-graph with degree sequence Dc, the
number of configuration resulting in H is given by :

nc(H) =

n∏
i=1

Dc(i)!Dc(i)!∏
i,j≤n

ωc(i, j)!
(4.2)

Proof. We have to count the number of bijective maps σc that map ωc(i, j) elements of a
set of cardinality Dc(i) to a set of cardinality Dc(j). We begin for each i, choosing these
subsets of outgoing and incoming edges, this can be done :(

Dc(i)

ωc(i, 1) · · ·ωc(i, n)

)(
Dc(i)

ωc(i, 1) · · ·ωc(i, n)

)
ways. Then, for each of these subsets there are ωc(i, j)! distinct bijections that produce
the same graph. Therefore the total number of configuration resulting in H is :

n∏
i=1

(
Dc(i)

ωc(i, 1) · · ·ωc(i, n)

)(
Dc(i)

ωc(i, 1) · · ·ωc(i, n)

) ∏
i,j≤n

ωc(i, j)!︸ ︷︷ ︸
ωc(j,i)!

= nc(H)

Generalized configuration model We now put together these colored graphs, let
Σ = {Σc; c ∈ C≤} the set of configurations. The map Γ : Σ → Ĝ(D) is the superposition
of the Γ(σc) defined above. The configuration model, denoted CM(D), is the law of Γ(σ),
when σ is chosen uniformly over Σ.

Lemma 5. Let D ∈ Dn, G with distribution CM(D) and H ∈ Ĝ(D). We have:

P(G = H) =
1

b(H)

∏
c∈C

n∏
i=1

Dc(i)!∏
c∈C<

Sc!
∏
c∈C=

(Sc − 1)!!
(4.3)

where Sc =
∑
Dc(i), and b(H) is defined by:

b(H) =

(∏
c∈C=

∏
i,j≤n

ωc(i, j)!

)(∏
c∈C=

n∏
i=1

(ωc(i, i)/2)!2ωc(i,i)/2
∏
i<j

ωc(i, j)!

)

Proof. The proof follows from the Lemma 3 and Lemma 4, and by noticing that the
cardinality of Σ is given by:

|Σ| =
∏
c∈C≤

|Σc| =
∏
c∈C=

(Sc − 1)!!
∏
c∈C<

Sc!

In particular if |C| = 1 and H is a simple graph, b(H) = 1. We have proven that G∗n,d,
Gn,d conditioned by simple graphs is the uniform law on simple d-regular graphs.
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4.2 Graphs with same universal covering neighborhood

Tree are taken with no particular ordering for their children.

4.2.1 Universal covering

Let G be a connected undirected (multi)graph. The universal covering of G is the infinite
unrooted tree TG where we connect each node to copies of its neighbours, repeating the
process infinitely. Given any vertex i of G, its h-depth universal covering neighborhood
[G, i]h, is the ball of radius h in TG around any copy of i. We can consider h-depth
universal covering neighborhood of non-connected graphs by taking the h-depth universal
covering neighborhood of its connected components. If the h-neighborhood of i is a tree
then it coincides with its h-depth universal covering neighborhood.

Figure 4: graph G Figure 5: Universal Covering of G

4.2.2 Graph with given fixed depth universal covering neighborhood

Let G be a graph. For h we define the h-depth universal covering neighborhood (abridged
h-neighborhood vector) :

ψh(G) = ([G, 1]h, · · · , [G, n]h)

where [G, i]h is the unlabeled h-depth universal covering neighborhood of i.

We will now describe a procedure which turns a given graph into a directed colored
graph. The colors C are defined as followed. Let F be the collection of unlabeled neigh-
borhoods [G(u, v), u]h, where G(u, v) is the graph obtained by removing the edge ↔ v.
We take C = F2. To construct the directed colored graph, for every pair such that u, v is
an edge in G, we include a directed edge u→ v with color :

(t, t′) = ([G(u, v), u]h−1, [G(v, u), v]h−1)

together with the conjugate edge v → u colored (t′, t). This defines G̃ an element of Ĝ(C),
we can also define its degree sequence D = D(G̃).

We define the colorblind graph of H ∈ Ĝ(C), defined by H = (V, ω), where :

ω(u, v) =
∑
c∈C

ωc(u, v)
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u

v

t

t′

(t,
t
′ )

(t
′ ,t)

Figure 6: Coloring procedure

Theorem 4.1. For any Γ ∈ Ĝ(D), the colorblind graph Γ satisfies ψh(Γ) = ψh(G), and
these are the only ones.

Proof. Consider first case h = 1, if Γ ∈ Ĝ(D), the 1-neighborhood of i in Γ only depends
on D(i), which is fixed, therefore ψ1(Γ) = ψ1(G).

We now assume that any Γ ∈ Ĝ(D(G̃(h − 1))) satisfies ψh−1(Γ) = ψh−1(G). For any
tree t ∈ F(h), we call tk the k-neighborhood of the root, and tk+ the tree of depth k + 1
obtained from connecting a node to the root of tk. We denote t∪ t′ the tree obtained from
fusing the roots of t and t′.
Let u → v be an edge in Γ with color (t, t′). We note by constraint of D, there must
exists in G̃, ṽ and ũ, such as u↔ ṽ is colored (t, t′) and ũ↔ v is colored (t′, t). Therefore,
[G, u]h−1 = t ∪ t′h−2,+ and [G, v]h−1 = t′ ∪ th−2,+. By assumption [Γ, u]h−1 = [G, u]h−1,
therefore the trees T = [Γ(u, v), u]h−1 and T ′ = [Γ(v, u), v]h−1 must satisfy :

T ∪ T ′h−2,+ = t ∪ t′h−2,+, T ′ ∪ Th−2,+ = t′ ∪ th−2,+ (4.4)

If T ′h−2 = t′h−2 and Th−2 = Th−2, by (4.4) T = t, T ′ = t′. Truncating at depth h − 2, we
get a similar equation :

Th−2 ∪ T ′h−3,+ = th−2 ∪ t′h−3,+, T ′h−2 ∪ Th−3,+ = t′h−2 ∪ th−3,+

by reiterating this reasoning we see that, T = t, T ′ = t′ iff T1 = t′1 and T ′1 = t′1, which is
guaranteed as G and Γ have same degree sequence. Therefore we have shown that :

[Γ(u, v), u]h−1 = t, [Γ(v, u), v]h−1 = t′ (4.5)

In particular this shows that Γ is uniquely determined by Γ.

This is true for any v connected to u, therefore :

[G, u]h =
⋃
v 6=u

[G(v, u), v]h−1 =
⋃
ṽ 6=u

[Γ(ṽ, u), ṽ]h−1 = [Γ, u]h (4.6)

On the contrary if a graph G′ has the same h-neighborhood as G, then its degree sequence
D(G̃′), is the same as G̃, there for G̃′ ∈ Ĝ(D) and G′ = G̃′
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Remark. Instead of unlabeled neighborhood we can take colored neighborhoods the proof
stays the same.

5 Reconstruction of a graph with its colored universal
covering neighborhood

5.1 Erdos–Gallai theorem

We call d ∈ Nn graphic if there exists a simple graph with degree sequence d.

Theorem 5.1 (Erdős-Gallai [6]). d ∈ Nn is graphic iff its sum is even and after reordering
d in decreasing order, for each integer k ∈ [[1, n]] :∑

i≤k

di ≤ k(k − 1) +
∑
i>k

min(k, di) (5.1)

Proof. Necessity is immediate as the sum is twice the number of edges of a graph and the
right side of the condition is the maximum contribution of the sum of the first k degrees
: k(k − 1) internal edges (counted twice) and for i > k min(di, k) external edges. For
the sufficiency we will give an algorithmic proof given by Tripathi [8]. We assume d is
reordered in decreasing order.

Let a subrealization of d be a graph with n vertices vi, such that the degree of vi is
lower then di. The initial subrealization has no edges.
Let the critical index r be the first index such that deg(vi) 6= di. Except the trivial case,
at first r = 1. Let S = {vr+1, · · · , vn} we assume in our algorithm that they no internal
edges in S. We will provide an algorithm that will decrease |dr − deg(vr)| while fixing
deg(vi) for i < r.

• Case 0 : vr = vi for some i such that deg(vi) < di we add vr ↔ vi.

• Case 1 : vr = vi for some i such that i < r, then deg(vi) = di > deg(vr), thus there
exists a vertex u adjacent to vi but not to vr.

– if dr − deg(vr) ≥ 2 we replace u↔ vi by u↔ vr ↔ vi

– if dr − deg(vr) = 1, since there is an even number of edges (counted double)
to be distributed therefore with an argument of parity one k > r must be such
that deg(vk) < dk, since we have considered Case 0, we have vk ↔ vr = u↔ vi
and we can replace this chain by vi ↔ vk and vk ↔ vr ↔ u.

• Case 2 : all vi, i < r are adjacent to vr, and deg(vk) 6= min(r, dk) for some k, since
there are no edges internal to S, deg(vk) ≤ r then we must have deg(vk) < dk and
since we have considered Case 0, vk ↔ vr. Since deg(vk) < r there exists i < r such
that vi = vk, finally using the same argument that in Case 1 we have u adjacent to
vi but not vr. We can now replace u↔ vi by u↔ vr and vi ↔ vk and we still have
deg(vk) ≤ dk.
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• Case 3 : all vi, i < r are adjacent to vr, and v1, · · · , vr−1 is not a complete graph,
there is i 6= j < r such that vi = vj. By the same argument then in Case 1 there
exists u,w ∈ S (possibly equal) such that they are adjacent to vi, vj respectively,
and not vr. We can replace u↔ vi, w ↔ vj by vi ↔ vj and w or u↔ v.

If none of these cases apply V − S = v1, · · · , vr is a complete graph and deg(vk) =
min(r, dk) for k > r. Since there are no internal edges in S, we have :∑

i≤r

deg(vi) = r(r − 1) +
∑
k>r

min(r, dk) (5.2)

which is impossible since
∑

i≤r deg(vi) <
∑

i≤r di. This concludes the algorithm and the
proof.

One generalization of the problem is the realization of a directed graph :

Theorem 5.2 (Berger [2]). Let d = (d+
i , d

−
i ) ∈ (N2)n. Then d is the sequence of oriented

in/out degrees of a directed graph iff it satisfies the two following conditions:
n∑
i=1

d+
i =

n∑
i=1

d−i (5.3)

and after reordering in lexicographic order, the "directed Erdős-Gallai condition":∑
i≤k

d+
i ≤

∑
i≤k

min(d−i , k − 1) +
∑
i>k

min(d−i , k) (5.4)

5.2 Reconstruction with colors

Fix w ∈ Fnp . We color the simple graph G ∈ G∗n,d by giving the color wi to i. Let Thp,d
be the set of rooted trees colored by Fp, of depth h. We take C = (Thp,d)2 and construct
G̃ ∈ G(C) the same way that in 4.2.2 but with colored trees where we color i with wi. We
still have D = D(G̃).

Question Given a degree sequence D ∈ Dn, is there a simple graph G associated with
D. If that is the case we also say that D is graphic.
As shown in Bordenave Coste [5] we can reduce this problem to a superposition of graphic
sequences and digraphic sequences :

If D is graphic in particular, for all c ∈ C=, (Dc(i))i∈[[1,n]] is graphic and c ∈ C 6= the
superposition of Gc and Gc∗ is graphic i.e. (Dc(i), Dc∗(i))i∈[[1,n]] is the sequence of oriented
in/out degrees of a directed graph.

On the contrary if these two conditions are met we can construct an element ofG ∈ Ĝ(C)
that is a superposition of simple directed graphs Gc. As each Gc is loop-less G is also
loop-less. Finally to prove that G is simple, as each Gc is simple, we only need to prove
that if there is a edge u↔ v in Gc and Gc′ then c = c′. This is exactly the work we have
done in Theorem 4.1, where we have shown :

c = c′ = ([G(u, v), u]h−1, [G(v, u), v]h−1)
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5.3 Number of simple graphs

Let D∗n ⊂ Dn be the set of graphical d-regular degree sequence, i.e. by Theorems 5.1, 5.2
the set of D = (Dc(i)) ∈ (NC)n such that :

• For all i ∈ [[1, n]] : ∑
c∈C

Dc(i) = d (5.5)

• For c ∈ C=, we have after reordering and for any k :

2|
∑
i

Dc(i) (5.6)∑
i≤k

Dc(i) ≤ k(k − 1) +
∑
i>k

min(k,Dc(i)) (5.7)

• For c ∈ C6=, we have after reordering and for any k :∑
i

Dc(i) =
∑
i

Dc∗(i) (5.8)∑
i≤k

Dc(i) ≤
∑
i≤k

min(Dc∗(i), k − 1) +
∑
i>k

min(Dc∗(i), k) (5.9)

For H ∈ G(C), H is a simple graph, therefore each Hc is simple and b(H) = 1 in Lemma
5. Therefore :

|G(D)| = P(G ∈ G(D))

∏
c∈C<

Sc!
∏
c∈C=

(Sc − 1)!!

∏
c∈C

n∏
i=1

Dc(i)!
(5.10)

With Theorem 4.1 we know that if D is graphic, G ∈ G(D) if and only if all Gc are simple.
If we recall the construction of Ĝ(C), these events are independent (if c 6= c′, c′∗). There-
fore, we can reduce the calculation of P(G ∈ G(D)) to the calculation of the probability of
the undirected configuration model or the bipartite configuration model having no loops
or multi-edges.

P(G ∈ G(D) =
∏
c∈C≤

P(G ∈ Ĝ(Dc) is simple) (5.11)

We can then rewrite (5.10) as :

|G(D)| =
∏
c∈C<

p(G ∈ Ĝ(Dc) is simple)Sc!
n∏
i=1

1

Dc(i)!Dc∗(i)!

×
∏
c∈C=

p(G ∈ Ĝ(Dc) is simple)(Sc − 1)!!
n∏
i=1

1

Dc(i)!

(5.12)

The probability of being simple will be high is Sc is small, so we will consider the cases
were Sc = Θ(n).
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k-cycles of a configuration σc for c ∈ C= A k-cycle for a permutation σc ∈ Σc, c ∈ C=,
is a set of k edges {e1, · · · , ek} such that for some k distinct fibers F c

vi
, ei joins F c

vi
and

F c
vi+1

with the convention F c
vk+1

= F c
v1
.

If we fix a set of edges {e1, · · · , ek} there are 2k corresponding ways to follow them
(ei, · · · , ei+k) (choosing were to start and which direction to go). If we fix k vertices
v1, · · · , vk, we have dvi choices of edges going out and dvi − 1 choices left for edges going
in to form a sequence. Therefore the total number of possible k-cycles in σc is:∑

J⊂V
|J |=k

∏
v∈J

Dc(v)(Dc(v)− 1) (5.13)

Finally if we consider k edges out of Sc the probability of them been paired is :

k!

(Sc − 1) · · · (Sc − 1− 2k)
(5.14)

Let Xk(σc) count the number of k-cycles in σc. By combining (5.13) and (5.14) we have
proven that :

E[Xk] = k!
∑
J⊂V
|J |=k

∏
v∈J

Dc(v)(Dc(v)− 1)

(Sc − 1) · · · (Sc − 1− 2k)
(5.15)

k!
∑

J⊂V
|J |=k

∏
v∈J Dc(v)(Dc(v)−1) is the first terms of the expansion of (

∑
Dc(i)(Dc(i)−1))k,

indeed :(
n∑
i=1

Dc(i)(Dc(i)− 1)

)k

=
∑

k1+···kn=k

(
k

k1 · · · kn

) n∏
i=1

(Dc(i)(Dc(i)− 1))ki

=k!
∑
J⊂V
|J |=k

∏
v∈J

Dc(v)(Dc(v)− 1)

+
∑

k1+···kn=k
∃ki /∈{0,1}

(
k

k1 · · · kn

) n∏
i=1

(Dc(i)(Dc(i)− 1))ki

As Dc(i) ≤ d, we have:∑
k1+···kn=k
∃ki /∈{0,1}

(
k

k1 · · · kn

) n∏
i=1

(Dc(i)(Dc(i)− 1))ki ≤ (d(d− 1))k
∑

k1+···kn=k
∃ki /∈{0,1}

(
k

k1 · · · kn

)

= (d(d− 1))k

nk − k!
∑
J⊂V
|J |=k


= (d(d− 1))k(nk − n!/(n− k)!)

= O(nk−1)

We have taken Sc big so that:

1

(Sc − 1) · · · (Sc − 1− 2k)
=

1

Skc +O(Sk−1
c )

=
1

Skc
+O(n−k−1)
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Let λc,n =
∑n

i=1Dc(i)(Dc(i)− 1)/Sc, we have :

E[Xk] = λkc,n +O(n−2) (5.16)

See Bollobás [3, Sec 2. Thm 2.16], Xk are asymptotically independent Poisson variables
with means λkc,n. Therefore :

p(G ∈ Ĝ(Dc) is simple) = P(X1 = 0, X2 = 0)

∼ P(X1 = 0)P(X2 = 0) ∼ e−λc,n−λ
2
c,n

(5.17)

k-cycles of a configuration σc for c ∈ C6= We have the same construction of k-cycles
in the directed case except when counting the number of out/in possible edges we have
Dc(v)Dc∗(v) in place of Dc(i)(Dc(i)− 1), therefore :

E[Xk] = k!
∑
J⊂V
|J |=k

∏
v∈J

Dc(v)Dc∗(v)

(Sc − 1) · · · (Sc − 1− 2k)
(5.18)

And we also have :
p(G ∈ Ĝ(Dc) ∼ e−λc,n−λ

2
c,n (5.19)

where λc,n =
∑n

i=1 Dc(i)Dc∗(i)/Sc

6 Resolution of the equation

6.1 Number of non backtracking path in a regular graph

Let A be the adjacency matrix of a d-regular graph G. Let ~alij count the number of non
backtracking walk from i to j of length l. aik~alkj counts the number of walks from i to
j of length l + 1 starting in k that are non backtracking except maybe the second step.
The number of walks from i to j of length l + 1 that are backtracking only in the second
step are walks of form (i, k, ω) where ω is a non backtracking walk of length l − 1 from i
to j and k is different of the first step of ω. As G is d-regular the are exactly (d− 1)~al−1

ij

walks of this form. Therefore :

~al+1
ij =

n∑
k=1

aik~a
l
kj − (d− 1)~al−1

ij (6.1)

Thus we derive :
~Al+1 = A~Al − (d− 1)Al−1 (6.2)

Let Ql be a polynomial base defined as follows :
Q0 = 1
Q1 = X
Ql+1 = XQl − (d− 1)Ql−1

Then ~Al = Ql(A). These polynomials are actually orthogonal for a certain measure
(Kesten-McKay measure) see Alon, Benjamini, Lubetzky & Sodin [1].
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Due to the construction of the universal covering a non backtracking walk on it is a
simple walk, and the number of non backtracking walk for i to j of length l is exactly the
number of times j appears in depth l of the universal covering neighborhood of i.

6.2 Condition on D

We write P in base Q :

P =
h∑
l=0

blQl (6.3)

For a tree t ∈ Thp,d we define P̃ (t) as :

P̃ (t) =
∑
x∈t

bd(x)+1x (6.4)

where d(x) is the depth of x. P̃ can by see as a linear function.

Proposition 6.1. Using the same notations, we have :

(P (A)w)i =
∑
t∈Thp,d

∑
t′∈Thp,d

D(t′,t)(i)P̃ (t) + b0wi (6.5)

Proof.
∑

t′∈Thp,d
D(t′,t)(i) gives us the number of times t appears in the h-neighborhood of

i. And :

(P (A)w)i =
h∑
l=0

n∑
k=1

~bla
l
ikwk (6.6)

The factor
∑n

k=1~a
l
ikblwk for l ≥ 1, counts the number of non backtracking walks starting

from i of length l giving them a mass blwk if they end in k. Therefore
∑

t′∈Thp,d
D(t′,t)(i)P̃ (t)

counts the total contribution of t in (P (A)w)i.

Therefore the condition on D, so that P (A)w = 0 is :

∀i ∈ [[1, n]],
∑
t∈Thp,d

∑
t′∈Thp,d

D(t′,t)(i)P̃ (t) = −b0wi (6.7)

If we set χw(D) = 1 if D satisfies (6.7) and 0 else, then we have finally:

|{G|P (A(G))w = 0}| =
∑

D∈D∗n

χw(D)
∏
c∈C<

p(G ∈ Ĝ(Dc) is simple)Sc!
n∏
i=1

1

Dc(i)!Dc∗(i)!

×
∏
c∈C=

p(G ∈ Ĝ(Dc) is simple)(Sc − 1)!!
n∏
i=1

1

Dc(i)!
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7 Conclusion
We might be able to prove a result similar to Huang [7], |{(G,w)|P (A(G))w = 0}|/G∗n,d =

O(1) by balancing p(G ∈ Ĝ(Dc) is simple) that is exponentially small when Sc is big and
Sc!
∏n

i=1
1

Dc(i)!Dc∗ (i)!
when Sc is small. This would imply :

∀λ ∈ A, P(λ ∈ Sp(G)) = P(detP (A(G)) = 0) = o(n−d) (7.1)

We know that the eigenvalues of a regular graph are in [−d, d]. Therefore, for any P
irreducible and monic in Q to have eigenvalues of a d-regular graph as its root means
its roots must be in [−d, d]. This bounds the size of the coefficient of P , they are at
most O(dk

2
) of such polynomials with degree lower then k, let Pk,d be the set of such

polynomials. Take h ∈ R, the probability of G ∈ Gn,d to have a eigenvalue of degree lower
then h is bounded by:∑

P∈Pbhc,d

P(detP (A(G)) = 0) ≤ exp(ln(d)h2 − d ln(n) +O(1)) (7.2)

If we take h = c
√

ln(n), for c d-small enough, then we would have proven that almost
surely all eigenvalues of a graph G ∈ Gn,d are of degree greater then c

√
ln(n). We might

get an even better estimate if we determine |Pk,d|.
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